第2条:遇到多个构造器参数时要考虑用构建器

静态工厂和构造器有个共同的局限性:它们都不能很好地扩展到大量的可选参数。考虑用一个类表示包装食品外面显示的营养成分标签。这些标签中有几个域是必需的:每份的含量、每罐的含量以及每份的卡路里,还有超过20个可选域:总脂肪量、饱和脂肪量、转化脂肪、胆固醇、钠等等。大多数产品在某几个可选域中都会有非零的值。

对于这样的类,应该用哪种构造器或者静态方法来编写呢?程序员一向习惯采用重叠构造器(telescoping constructor)模式,在这种模式下,你提供第一个只有必要参数的构造器,第二个构造器有一个可选参数,第三个有两个可选参数,以此类推,最后一个构造器包含所有可选参数。下面有个示例,为了简单起见,它只显示四个可选域:

// Telescoping constructor pattern - does not scale well!
public class NutritionFacts {
    private final int servingSize;  // (mL)            required
    private final int servings;     // (per container) required
    private final int calories;     //                 optional
    private final int fat;          // (g)             optional
    private final int sodium;       // (mg)            optional
    private final int carbohydrate; // (g)             optional

    public NutritionFacts(int servingSize, int servings) {
        this(servingSize, servings, 0);
    }

    public NutritionFacts(int servingSize, int servings, int calories) {
        this(servingSize, servings, calories, 0);
    }

    public NutritionFacts(int servingSize, int servings, int calories, int fat) {
        this(servingSize, servings, calories, fat, 0);
    }

    public NutritionFacts(int servingSize, int servings, int calories, int fat, int sodium) {
        this(servingSize, servings, calories, fat, sodium, 0);
    }

    public NutritionFacts(int servingSize, int servings, int calories, int fat, int sodium, int carbohydrate) {
        this.servingSize  = servingSize;
        this.servings     = servings;
        this.calories     = calories;
        this.fat          = fat;
        this.sodium       = sodium;
        this.carbohydrate = carbohydrate;
    }
}

当你想要创建实例的时候,就利用参数列表最短的构造器,但该列表中包含了要设置的所有参数:

NutritionFacts cocaCola = new NutritionFacts(240, 8, 100, 0, 35, 27);

这个构造器调用通常需要许多你本不想设置的参数,但还是不得不为他们传递值。在这个例子中,我们给fat传递了一个值为0。如果“仅仅”是这6个参数,看起来还不算太糟,问题是随着参数数目的增加,它很快就失去了控制。

一句话:重叠构造器模式可行,但是当有许多参数的时候,客户端代码会很难编写,并且仍然较难以阅读。如果读者想知道那些值是什么意思,必须很仔细地数着这些参数来探个究竟。一长串类型相同的参数会导致一些微妙的错误。如果客户端不小心颠倒了其中两个参数的顺序,编译器也不会出错,但是程序在运行时会出现错误的行为。

遇到许多构造参数的时候,还有第二种代替办法,即JavaBeans模式,在这种模式下,调用一个无参构造器来创建队形,然后调用setter方法来设置每个必要的参数,以及每个相关的可选参数:

// JavaBeans Pattern - allows inconsistency, mandates mutability
public class NutritionFacts {
    // Parameters initialized to default values (if any)
    private int servingSize  = -1; // Required; no default value
    private int servings     = -1; // 
    private int calories     = 0;
    private int fat          = 0;
    private int sodium       = 0;
    private int carbohydrate = 0;

    public NutritionFacts() {}

    // Setters
    public void setServingSize(int val)  { servingSize = val; }
    public void setServings(int val)     { servings = val; }
    public void setCalories(int val)     { calories = val; }
    public void setFat(int val)          { fat = val; }
    public void setSodium(int val)       { sodium = val; }
    public void setCarbohydrate(int val) { carbohydrate = val; }
}

这种模式弥补了重叠构造器模式的不足。说得明白一点,就是创建实例很容易,这样产生的代码读起来也很容易:

NutritionFacts cocaCola = new NutritionFacts();
cocaCola.setServingSize(240);
cocaCola.setServings(8);
cocaCola.setCalories(100);
cocaCola.setSodium(35);
cocaCola.setCarbohydrate(27);

遗憾的是,JavaBeans模式自身有着很严重的缺点。因为构造过程被分到了几个调用中,在构造过程中JavaBean可能处于不一致的状态。类无法仅仅通过检验构造器参数的有效性来保证一致性。试图使用处于不一致状态的对象,将会导致失败,这种失败与包含错误的代码大相径庭,因此它调试起来十分困难。与此相关的另一点不足在于,JavaBeans模式阻止了把类做成不可变的可能(见第15条),这就需要程序员付出额外的努力来确保它的线程安全。

当对象的构造完成,并且不允许在解冻之前使用时,通过手工“冻结”对象,可以弥补这些不足,但是这种方式十分笨拙,在实践很少使用。此外,它甚至会在运行时导致错误,因为编译器无法确保程序员会在使用之前先在对象上调用freeze方法。

幸运的是,还有第三种替代方法,既能保证像重叠构造器模式那样的安全性,也能保证像JavaBeans模式那么好的可读性。这就是Builder模式[Gamma95,p.97]的一种形式。不直接生成想要的对象,而是让客户端利用所有必要的参数调用构造器(或者静态工厂),得到一个builder对象。然后客户端调用无参的build方法来生成不可变的对象。这个builder是它构建的类的静态成员类(见第22条)。下面就是它的示例:

// Builder Pattern
public class NutritionFacts {
    private final int servingSize;
    private final int servings;
    private final int calories;
    private final int fat;
    private final int sodium;
    private final int carbohydrate;

    public static class Builder {
        // Required parameters
        private final int servingSize;
        private final int servings;

        // Optional parameters - initialized to default values
        private int calories     = 0;
        private int fat          = 0;
        private int sodium       = 0;
        private int carbohydrate = 0;

        public Builder(int servingSize, int servings) {
            this.servingSize = servingSize;
            this.servings    = servings;
        }

        public Builder calories(int val) 
            { calories = val;        return this; }
        public Builder fat(int val)
            { fat = val;             return this; }
        public Builder sodium(int val)
            { sodium = val;          return this; }
        public Builder carbohydrate(int val)
            { carbohydrate = val;    return this; }

        public NutritionFacts build() {
            return new NutritionFacts(this);
        }
    }

    private NutritionFacts(Builder builder) {
        servingSize  = builder.servingSize;
        servings     = builder.servings;
        calories     = builder.calories;
        fat          = builder.fat;
        sodium       = builder.sodium;
        carbohydrate = builder.carbohydrate;
    }
}

注意NutritionFacts是不可变的,所有的默认参数值都单独放在一个地方。builder的setter方法返回builder本身,以便可以把调用链接起来。下面就是客户端代码:

NutritionFacts cocaCola = new NutritionFacts.Builder(240, 8)
    .calories(100).sodium(35).carbohydrate(27).build()

这样的客户端代码很容易编写,更为重要的是,易于阅读。builder模式模拟了具名的可选参数,就想Ada和Python中的一样。

builder像个构造器一样,可以对其参数强加约束条件。build方法可以检验这些约束条件。将参数从builder拷贝到对象中之后,并在对象域而不是builder域(见第39条)中对它们进行检验,这一点很重要。如果违反了任何约束条件,build方法就应该抛出IllegalStateException(见第60条)。异常的详细信息应该显示违反了哪个约束条件(见第63条)。

对多个参数强加约束条件的另一种方法是,用多个setter方法对某个约束条件必须持有的所有参数进行检查。如果该约束条件没有得到满足,setter方法就会抛出IllegalArgumentsException。这有个好处,就是一旦传递了无效的参数,立即就会发现约束条件失败,而不是等着调用build方法。

与构造器想必,builder模式的略微优势在于,builder可以有多个可变(varargs)参数。构造器就像方法一样,只能有一个可变参数。因为builder利用单独的方法来设置每个参数,你想要多少个可变参数,它们就可以有多少个,知道每个setter方法都有一个可变参数。

Builder模式十分灵活,可以利用单个builder构建多个对象。builder的参数可以在创建对象期间进行调整,也可以随着不同的对象而改变。builder可以自动填充某些域,例如每次创建对象时自动增加序列号。

设置了参数的builder生成了一个很好的抽象工厂(Abstract Factory)[Gamma95,p.87]。换句话说,客户端可以将这样一个builder传给方法,使该方法能够为客户端创建一个或者多个对象。要使用这种用法,需要有个类型来表示builder。如果使用的是发行版本1.5或者更新的版本,只要一个泛型(见第26条)就能满足所有的builder,无论它们在构建哪种类型的对象:

// A builder for objects of type T
public interface Builder<T> {
    public T build();
}

注意,可以声明NutritionFacts.Builder类来实现Builder<NutritionFacts>

带有Builder实例的方法通常利用有限制的通配符类型(bounded wildcard type,见第28条)来约束构建器的类型参数。例如, 下面就是构建每个节点的方法,它利用一个客户端提供的Builder实例来构建树:

Tree buildTree(Builder<? extends Node> nodeBuilder) { ... }

Java中传统的抽象工厂实现是Class对象,用newInstance方法充当build方法的一部分。这种用法隐含着许多问题。newInstance方法总是企图调用类的无参构造器,这个构造器甚至可能根本不存在。如果类没有可以访问的无参构造器,你也不会收到编译时错误。相反,客户端代码必须在运行时处理InstantiationException或者IllegalAccessException,这样既不雅观也不方便。newInstance方法还会传播由无参构造器抛出的任何异常,即使newInstance缺乏相应的throws子句。换句话说,Class.newInstance破坏了编译时的异常检查。上面讲过的Builder接口弥补了这些不足。

Builder模式的确也有它自身的不足。为了创建西乡,必须先创建它的构建器。虽然创建构建器的开销在实践中可能不那么明显,但是在某些十分注重性能的情况下,可能就成问题了。Builder模式还比重叠构造器更加冗长,因此它只有在很多参数的时候才使用,比如4个或者更多个参数。但是记住,将来你可能需要添加参数。如果一开始就使用构造器或者静态工厂,等到类需要多个参数时才添加构建器,就会无法控制,那些过时的构造器或者静态工厂显得十分不协调。因此,通常最好一开始就使用构建器。

简而言之,如果类的构造器或者静态工厂中具有多个参数,设计这种类时,Builder模式就是种不错的选择,特别是当大多数参数都是可选的时候。与使用传统的重叠构造器模式相比,使用Builder模式的客户端代码将更易于阅读和编写,构建器也比JavaBeans更加安全。

results matching ""

    No results matching ""